extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×S3).1C23 = C2×C4⋊D12 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).1C2^3 | 192,1034 |
(C22×S3).2C23 = C2×C42⋊7S3 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).2C2^3 | 192,1035 |
(C22×S3).3C23 = C42.276D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).3C2^3 | 192,1036 |
(C22×S3).4C23 = C2×C42⋊3S3 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).4C2^3 | 192,1037 |
(C22×S3).5C23 = C42.277D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).5C2^3 | 192,1038 |
(C22×S3).6C23 = C2×Dic3⋊D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).6C2^3 | 192,1048 |
(C22×S3).7C23 = C2×C23.11D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).7C2^3 | 192,1050 |
(C22×S3).8C23 = C2×C23.21D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).8C2^3 | 192,1051 |
(C22×S3).9C23 = C23⋊4D12 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).9C2^3 | 192,1052 |
(C22×S3).10C23 = C24.41D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).10C2^3 | 192,1053 |
(C22×S3).11C23 = C24.42D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).11C2^3 | 192,1054 |
(C22×S3).12C23 = C2×D6.D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).12C2^3 | 192,1064 |
(C22×S3).13C23 = C6.2+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).13C2^3 | 192,1069 |
(C22×S3).14C23 = C2×C4⋊C4⋊S3 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).14C2^3 | 192,1071 |
(C22×S3).15C23 = C6.52- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).15C2^3 | 192,1072 |
(C22×S3).16C23 = C6.112+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).16C2^3 | 192,1073 |
(C22×S3).17C23 = C6.62- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).17C2^3 | 192,1074 |
(C22×S3).18C23 = C42⋊10D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).18C2^3 | 192,1083 |
(C22×S3).19C23 = C42⋊11D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).19C2^3 | 192,1084 |
(C22×S3).20C23 = C42.92D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).20C2^3 | 192,1085 |
(C22×S3).21C23 = C42⋊12D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).21C2^3 | 192,1086 |
(C22×S3).22C23 = C42.95D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).22C2^3 | 192,1089 |
(C22×S3).23C23 = C42.96D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).23C2^3 | 192,1090 |
(C22×S3).24C23 = C42.97D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).24C2^3 | 192,1091 |
(C22×S3).25C23 = C42.98D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).25C2^3 | 192,1092 |
(C22×S3).26C23 = C42.99D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).26C2^3 | 192,1093 |
(C22×S3).27C23 = C42.100D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).27C2^3 | 192,1094 |
(C22×S3).28C23 = C42.102D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).28C2^3 | 192,1097 |
(C22×S3).29C23 = C42.104D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).29C2^3 | 192,1099 |
(C22×S3).30C23 = C42.228D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).30C2^3 | 192,1107 |
(C22×S3).31C23 = Dic6⋊23D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).31C2^3 | 192,1111 |
(C22×S3).32C23 = Dic6⋊24D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).32C2^3 | 192,1112 |
(C22×S3).33C23 = D4⋊5D12 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).33C2^3 | 192,1113 |
(C22×S3).34C23 = D4⋊6D12 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).34C2^3 | 192,1114 |
(C22×S3).35C23 = C42⋊18D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).35C2^3 | 192,1115 |
(C22×S3).36C23 = C42.113D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).36C2^3 | 192,1117 |
(C22×S3).37C23 = C42.114D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).37C2^3 | 192,1118 |
(C22×S3).38C23 = C42⋊19D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).38C2^3 | 192,1119 |
(C22×S3).39C23 = C42.115D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).39C2^3 | 192,1120 |
(C22×S3).40C23 = C42.116D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).40C2^3 | 192,1121 |
(C22×S3).41C23 = C42.117D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).41C2^3 | 192,1122 |
(C22×S3).42C23 = C42.118D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).42C2^3 | 192,1123 |
(C22×S3).43C23 = C42.119D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).43C2^3 | 192,1124 |
(C22×S3).44C23 = C42.122D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).44C2^3 | 192,1127 |
(C22×S3).45C23 = Q8⋊6D12 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).45C2^3 | 192,1135 |
(C22×S3).46C23 = Q8⋊7D12 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).46C2^3 | 192,1136 |
(C22×S3).47C23 = C42.132D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).47C2^3 | 192,1140 |
(C22×S3).48C23 = C42.133D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).48C2^3 | 192,1141 |
(C22×S3).49C23 = C42.134D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).49C2^3 | 192,1142 |
(C22×S3).50C23 = C42.135D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).50C2^3 | 192,1143 |
(C22×S3).51C23 = C42.136D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).51C2^3 | 192,1144 |
(C22×S3).52C23 = C24.67D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).52C2^3 | 192,1145 |
(C22×S3).53C23 = C24⋊8D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).53C2^3 | 192,1149 |
(C22×S3).54C23 = C24.44D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).54C2^3 | 192,1150 |
(C22×S3).55C23 = C24.45D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).55C2^3 | 192,1151 |
(C22×S3).56C23 = C24.46D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).56C2^3 | 192,1152 |
(C22×S3).57C23 = C24⋊9D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).57C2^3 | 192,1153 |
(C22×S3).58C23 = C24.47D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).58C2^3 | 192,1154 |
(C22×S3).59C23 = C12⋊(C4○D4) | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).59C2^3 | 192,1155 |
(C22×S3).60C23 = C6.322+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).60C2^3 | 192,1156 |
(C22×S3).61C23 = Dic6⋊19D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).61C2^3 | 192,1157 |
(C22×S3).62C23 = Dic6⋊20D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).62C2^3 | 192,1158 |
(C22×S3).63C23 = C6.342+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).63C2^3 | 192,1160 |
(C22×S3).64C23 = D12⋊19D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).64C2^3 | 192,1168 |
(C22×S3).65C23 = C6.422+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).65C2^3 | 192,1172 |
(C22×S3).66C23 = C6.442+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).66C2^3 | 192,1174 |
(C22×S3).67C23 = C6.452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).67C2^3 | 192,1175 |
(C22×S3).68C23 = C6.462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).68C2^3 | 192,1176 |
(C22×S3).69C23 = C6.1152+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).69C2^3 | 192,1177 |
(C22×S3).70C23 = C6.472+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).70C2^3 | 192,1178 |
(C22×S3).71C23 = C6.482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).71C2^3 | 192,1179 |
(C22×S3).72C23 = C6.492+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).72C2^3 | 192,1180 |
(C22×S3).73C23 = C4⋊C4.187D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).73C2^3 | 192,1183 |
(C22×S3).74C23 = C6.532+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).74C2^3 | 192,1196 |
(C22×S3).75C23 = C6.222- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).75C2^3 | 192,1199 |
(C22×S3).76C23 = C6.232- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).76C2^3 | 192,1200 |
(C22×S3).77C23 = C6.772- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).77C2^3 | 192,1201 |
(C22×S3).78C23 = C6.242- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).78C2^3 | 192,1202 |
(C22×S3).79C23 = C6.562+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).79C2^3 | 192,1203 |
(C22×S3).80C23 = C6.782- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).80C2^3 | 192,1204 |
(C22×S3).81C23 = C6.252- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).81C2^3 | 192,1205 |
(C22×S3).82C23 = C6.592+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).82C2^3 | 192,1206 |
(C22×S3).83C23 = C6.792- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).83C2^3 | 192,1207 |
(C22×S3).84C23 = C4⋊C4.197D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).84C2^3 | 192,1208 |
(C22×S3).85C23 = C6.612+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).85C2^3 | 192,1216 |
(C22×S3).86C23 = C6.1222+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).86C2^3 | 192,1217 |
(C22×S3).87C23 = C6.652+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).87C2^3 | 192,1221 |
(C22×S3).88C23 = C6.662+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).88C2^3 | 192,1222 |
(C22×S3).89C23 = C6.672+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).89C2^3 | 192,1223 |
(C22×S3).90C23 = C6.852- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).90C2^3 | 192,1224 |
(C22×S3).91C23 = C6.682+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).91C2^3 | 192,1225 |
(C22×S3).92C23 = C6.692+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).92C2^3 | 192,1226 |
(C22×S3).93C23 = C42.137D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).93C2^3 | 192,1228 |
(C22×S3).94C23 = C42.138D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).94C2^3 | 192,1229 |
(C22×S3).95C23 = S3×C4.4D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).95C2^3 | 192,1232 |
(C22×S3).96C23 = C42⋊22D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).96C2^3 | 192,1237 |
(C22×S3).97C23 = C42.143D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).97C2^3 | 192,1240 |
(C22×S3).98C23 = C42.144D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).98C2^3 | 192,1241 |
(C22×S3).99C23 = C42⋊24D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).99C2^3 | 192,1242 |
(C22×S3).100C23 = C42.145D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).100C2^3 | 192,1243 |
(C22×S3).101C23 = C42.237D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).101C2^3 | 192,1250 |
(C22×S3).102C23 = C42.150D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).102C2^3 | 192,1251 |
(C22×S3).103C23 = C42.152D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).103C2^3 | 192,1253 |
(C22×S3).104C23 = C42.153D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).104C2^3 | 192,1254 |
(C22×S3).105C23 = C42.154D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).105C2^3 | 192,1255 |
(C22×S3).106C23 = C42.155D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).106C2^3 | 192,1256 |
(C22×S3).107C23 = C42.156D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).107C2^3 | 192,1257 |
(C22×S3).108C23 = C42.157D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).108C2^3 | 192,1258 |
(C22×S3).109C23 = C42.158D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).109C2^3 | 192,1259 |
(C22×S3).110C23 = C42.160D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).110C2^3 | 192,1261 |
(C22×S3).111C23 = C42⋊25D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).111C2^3 | 192,1263 |
(C22×S3).112C23 = C42.163D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).112C2^3 | 192,1268 |
(C22×S3).113C23 = C42.164D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).113C2^3 | 192,1269 |
(C22×S3).114C23 = C42⋊27D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).114C2^3 | 192,1270 |
(C22×S3).115C23 = C42.165D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).115C2^3 | 192,1271 |
(C22×S3).116C23 = Dic6⋊11D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).116C2^3 | 192,1277 |
(C22×S3).117C23 = C42.168D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).117C2^3 | 192,1278 |
(C22×S3).118C23 = C42⋊30D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).118C2^3 | 192,1279 |
(C22×S3).119C23 = C42.240D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).119C2^3 | 192,1284 |
(C22×S3).120C23 = C42.176D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).120C2^3 | 192,1290 |
(C22×S3).121C23 = C42.177D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).121C2^3 | 192,1291 |
(C22×S3).122C23 = C42.178D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).122C2^3 | 192,1292 |
(C22×S3).123C23 = C42.179D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).123C2^3 | 192,1293 |
(C22×S3).124C23 = C42.180D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).124C2^3 | 192,1294 |
(C22×S3).125C23 = C2×C23.28D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).125C2^3 | 192,1348 |
(C22×S3).126C23 = C2×C12⋊7D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).126C2^3 | 192,1349 |
(C22×S3).127C23 = C24.83D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).127C2^3 | 192,1350 |
(C22×S3).128C23 = C2×C23.14D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).128C2^3 | 192,1361 |
(C22×S3).129C23 = C2×C12⋊3D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).129C2^3 | 192,1362 |
(C22×S3).130C23 = C24⋊12D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).130C2^3 | 192,1363 |
(C22×S3).131C23 = C24.52D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).131C2^3 | 192,1364 |
(C22×S3).132C23 = C24.53D6 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).132C2^3 | 192,1365 |
(C22×S3).133C23 = C2×C12.23D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).133C2^3 | 192,1373 |
(C22×S3).134C23 = C6.442- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).134C2^3 | 192,1375 |
(C22×S3).135C23 = C6.452- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).135C2^3 | 192,1376 |
(C22×S3).136C23 = C6.1042- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).136C2^3 | 192,1383 |
(C22×S3).137C23 = C6.1452+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).137C2^3 | 192,1388 |
(C22×S3).138C23 = C6.1462+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | | (C2^2xS3).138C2^3 | 192,1389 |
(C22×S3).139C23 = (C2×C12)⋊17D4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).139C2^3 | 192,1391 |
(C22×S3).140C23 = C6.1082- 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).140C2^3 | 192,1392 |
(C22×S3).141C23 = C6.1482+ 1+4 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 96 | | (C2^2xS3).141C2^3 | 192,1393 |
(C22×S3).142C23 = C6.C25 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | 4 | (C2^2xS3).142C2^3 | 192,1523 |
(C22×S3).143C23 = D6.C24 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | 8- | (C2^2xS3).143C2^3 | 192,1525 |
(C22×S3).144C23 = D12.39C23 | φ: C23/C2 → C22 ⊆ Out C22×S3 | 48 | 8+ | (C2^2xS3).144C2^3 | 192,1527 |
(C22×S3).145C23 = C2×C42⋊2S3 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).145C2^3 | 192,1031 |
(C22×S3).146C23 = C2×C4×D12 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).146C2^3 | 192,1032 |
(C22×S3).147C23 = C4×C4○D12 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).147C2^3 | 192,1033 |
(C22×S3).148C23 = C2×S3×C22⋊C4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).148C2^3 | 192,1043 |
(C22×S3).149C23 = C2×Dic3⋊4D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).149C2^3 | 192,1044 |
(C22×S3).150C23 = C24.35D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).150C2^3 | 192,1045 |
(C22×S3).151C23 = C2×C23.9D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).151C2^3 | 192,1047 |
(C22×S3).152C23 = C24.38D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).152C2^3 | 192,1049 |
(C22×S3).153C23 = C2×C4⋊C4⋊7S3 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).153C2^3 | 192,1061 |
(C22×S3).154C23 = C2×Dic3⋊5D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).154C2^3 | 192,1062 |
(C22×S3).155C23 = C6.82+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).155C2^3 | 192,1063 |
(C22×S3).156C23 = C2×C12⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).156C2^3 | 192,1065 |
(C22×S3).157C23 = C6.2- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).157C2^3 | 192,1066 |
(C22×S3).158C23 = C2×D6⋊Q8 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).158C2^3 | 192,1067 |
(C22×S3).159C23 = C2×C4.D12 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).159C2^3 | 192,1068 |
(C22×S3).160C23 = C6.102+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).160C2^3 | 192,1070 |
(C22×S3).161C23 = S3×C42⋊C2 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).161C2^3 | 192,1079 |
(C22×S3).162C23 = C42⋊9D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).162C2^3 | 192,1080 |
(C22×S3).163C23 = C42.188D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).163C2^3 | 192,1081 |
(C22×S3).164C23 = C42.91D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).164C2^3 | 192,1082 |
(C22×S3).165C23 = C42.93D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).165C2^3 | 192,1087 |
(C22×S3).166C23 = C42.94D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).166C2^3 | 192,1088 |
(C22×S3).167C23 = C4×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).167C2^3 | 192,1095 |
(C22×S3).168C23 = C42⋊13D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).168C2^3 | 192,1104 |
(C22×S3).169C23 = C42.108D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).169C2^3 | 192,1105 |
(C22×S3).170C23 = C42⋊14D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).170C2^3 | 192,1106 |
(C22×S3).171C23 = D4×D12 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).171C2^3 | 192,1108 |
(C22×S3).172C23 = D12⋊23D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).172C2^3 | 192,1109 |
(C22×S3).173C23 = D12⋊24D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).173C2^3 | 192,1110 |
(C22×S3).174C23 = C42.229D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).174C2^3 | 192,1116 |
(C22×S3).175C23 = C42.125D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).175C2^3 | 192,1131 |
(C22×S3).176C23 = C4×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).176C2^3 | 192,1132 |
(C22×S3).177C23 = C42.126D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).177C2^3 | 192,1133 |
(C22×S3).178C23 = Q8×D12 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).178C2^3 | 192,1134 |
(C22×S3).179C23 = C42.232D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).179C2^3 | 192,1137 |
(C22×S3).180C23 = D12⋊10Q8 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).180C2^3 | 192,1138 |
(C22×S3).181C23 = C42.131D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).181C2^3 | 192,1139 |
(C22×S3).182C23 = C24⋊7D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).182C2^3 | 192,1148 |
(C22×S3).183C23 = S3×C4⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).183C2^3 | 192,1163 |
(C22×S3).184C23 = C6.372+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).184C2^3 | 192,1164 |
(C22×S3).185C23 = C4⋊C4⋊21D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).185C2^3 | 192,1165 |
(C22×S3).186C23 = C6.382+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).186C2^3 | 192,1166 |
(C22×S3).187C23 = C6.722- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).187C2^3 | 192,1167 |
(C22×S3).188C23 = C6.402+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).188C2^3 | 192,1169 |
(C22×S3).189C23 = C6.732- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).189C2^3 | 192,1170 |
(C22×S3).190C23 = D12⋊20D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).190C2^3 | 192,1171 |
(C22×S3).191C23 = C6.432+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).191C2^3 | 192,1173 |
(C22×S3).192C23 = S3×C22⋊Q8 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).192C2^3 | 192,1185 |
(C22×S3).193C23 = C4⋊C4⋊26D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).193C2^3 | 192,1186 |
(C22×S3).194C23 = C6.162- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).194C2^3 | 192,1187 |
(C22×S3).195C23 = C6.172- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).195C2^3 | 192,1188 |
(C22×S3).196C23 = D12⋊21D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).196C2^3 | 192,1189 |
(C22×S3).197C23 = D12⋊22D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).197C2^3 | 192,1190 |
(C22×S3).198C23 = Dic6⋊21D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).198C2^3 | 192,1191 |
(C22×S3).199C23 = Dic6⋊22D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).199C2^3 | 192,1192 |
(C22×S3).200C23 = C6.512+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).200C2^3 | 192,1193 |
(C22×S3).201C23 = C6.1182+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).201C2^3 | 192,1194 |
(C22×S3).202C23 = C6.522+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).202C2^3 | 192,1195 |
(C22×S3).203C23 = C6.202- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).203C2^3 | 192,1197 |
(C22×S3).204C23 = C6.212- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).204C2^3 | 192,1198 |
(C22×S3).205C23 = C6.1202+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).205C2^3 | 192,1212 |
(C22×S3).206C23 = C6.1212+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).206C2^3 | 192,1213 |
(C22×S3).207C23 = C6.822- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).207C2^3 | 192,1214 |
(C22×S3).208C23 = C4⋊C4⋊28D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).208C2^3 | 192,1215 |
(C22×S3).209C23 = C6.622+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).209C2^3 | 192,1218 |
(C22×S3).210C23 = C6.632+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).210C2^3 | 192,1219 |
(C22×S3).211C23 = C6.642+ 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).211C2^3 | 192,1220 |
(C22×S3).212C23 = C42.233D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).212C2^3 | 192,1227 |
(C22×S3).213C23 = C42⋊20D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).213C2^3 | 192,1233 |
(C22×S3).214C23 = C42.141D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).214C2^3 | 192,1234 |
(C22×S3).215C23 = D12⋊10D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).215C2^3 | 192,1235 |
(C22×S3).216C23 = Dic6⋊10D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).216C2^3 | 192,1236 |
(C22×S3).217C23 = C42⋊23D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).217C2^3 | 192,1238 |
(C22×S3).218C23 = C42.234D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).218C2^3 | 192,1239 |
(C22×S3).219C23 = C42.236D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).219C2^3 | 192,1247 |
(C22×S3).220C23 = C42.148D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).220C2^3 | 192,1248 |
(C22×S3).221C23 = D12⋊7Q8 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).221C2^3 | 192,1249 |
(C22×S3).222C23 = C42.151D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).222C2^3 | 192,1252 |
(C22×S3).223C23 = C42⋊26D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).223C2^3 | 192,1264 |
(C22×S3).224C23 = C42.189D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).224C2^3 | 192,1265 |
(C22×S3).225C23 = C42.161D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).225C2^3 | 192,1266 |
(C22×S3).226C23 = C42.162D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).226C2^3 | 192,1267 |
(C22×S3).227C23 = C42⋊28D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).227C2^3 | 192,1274 |
(C22×S3).228C23 = C42.238D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).228C2^3 | 192,1275 |
(C22×S3).229C23 = D12⋊11D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).229C2^3 | 192,1276 |
(C22×S3).230C23 = C42.171D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).230C2^3 | 192,1283 |
(C22×S3).231C23 = D12⋊12D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).231C2^3 | 192,1285 |
(C22×S3).232C23 = D12⋊8Q8 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).232C2^3 | 192,1286 |
(C22×S3).233C23 = C42.241D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).233C2^3 | 192,1287 |
(C22×S3).234C23 = C42.174D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).234C2^3 | 192,1288 |
(C22×S3).235C23 = D12⋊9Q8 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).235C2^3 | 192,1289 |
(C22×S3).236C23 = C22×D6⋊C4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).236C2^3 | 192,1346 |
(C22×S3).237C23 = C2×C4×C3⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).237C2^3 | 192,1347 |
(C22×S3).238C23 = C2×C23⋊2D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).238C2^3 | 192,1358 |
(C22×S3).239C23 = C2×D6⋊3D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).239C2^3 | 192,1359 |
(C22×S3).240C23 = D4×C3⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).240C2^3 | 192,1360 |
(C22×S3).241C23 = C2×D6⋊3Q8 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).241C2^3 | 192,1372 |
(C22×S3).242C23 = Q8×C3⋊D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).242C2^3 | 192,1374 |
(C22×S3).243C23 = (C2×D4)⋊43D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).243C2^3 | 192,1387 |
(C22×S3).244C23 = C6.1072- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).244C2^3 | 192,1390 |
(C22×S3).245C23 = C22×C4○D12 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).245C2^3 | 192,1513 |
(C22×S3).246C23 = C22×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).246C2^3 | 192,1515 |
(C22×S3).247C23 = C22×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).247C2^3 | 192,1518 |
(C22×S3).248C23 = C2×Q8.15D6 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).248C2^3 | 192,1519 |
(C22×S3).249C23 = C2×S3×C4○D4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | | (C2^2xS3).249C2^3 | 192,1520 |
(C22×S3).250C23 = C2×Q8○D12 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 96 | | (C2^2xS3).250C2^3 | 192,1522 |
(C22×S3).251C23 = S3×2- 1+4 | φ: C23/C22 → C2 ⊆ Out C22×S3 | 48 | 8- | (C2^2xS3).251C2^3 | 192,1526 |
(C22×S3).252C23 = S3×C2×C42 | φ: trivial image | 96 | | (C2^2xS3).252C2^3 | 192,1030 |
(C22×S3).253C23 = C2×S3×C4⋊C4 | φ: trivial image | 96 | | (C2^2xS3).253C2^3 | 192,1060 |
(C22×S3).254C23 = C4×S3×D4 | φ: trivial image | 48 | | (C2^2xS3).254C2^3 | 192,1103 |
(C22×S3).255C23 = C4×S3×Q8 | φ: trivial image | 96 | | (C2^2xS3).255C2^3 | 192,1130 |
(C22×S3).256C23 = S3×C22.D4 | φ: trivial image | 48 | | (C2^2xS3).256C2^3 | 192,1211 |
(C22×S3).257C23 = S3×C42.C2 | φ: trivial image | 96 | | (C2^2xS3).257C2^3 | 192,1246 |
(C22×S3).258C23 = S3×C42⋊2C2 | φ: trivial image | 48 | | (C2^2xS3).258C2^3 | 192,1262 |
(C22×S3).259C23 = S3×C4⋊1D4 | φ: trivial image | 48 | | (C2^2xS3).259C2^3 | 192,1273 |
(C22×S3).260C23 = S3×C4⋊Q8 | φ: trivial image | 96 | | (C2^2xS3).260C2^3 | 192,1282 |
(C22×S3).261C23 = S3×C23×C4 | φ: trivial image | 96 | | (C2^2xS3).261C2^3 | 192,1511 |
(C22×S3).262C23 = C22×S3×Q8 | φ: trivial image | 96 | | (C2^2xS3).262C2^3 | 192,1517 |